Pedagogy

Dr Zagami developed an interest in teaching at an early age, running classes on what he learnt at primary school for younger children not yet able to attend, then as a mentor/tutor in high school to struggling students, but it was not until his experiences as an instructor in the military that he gave serious consideration to teaching as a career. Pursuing a Graduate Diploma in Secondary Teaching, he discovered computer education was a possibility and the opportunity to combine his passions for technology and learning. Riding the technological innovation wave, he immediately undertook technology coordinator roles, teaching other teachers how to use computers and the internet while developing expertise in online and adaptive learning environments. Reaching the plateau of advancement as a teacher and finalising his doctoral studies, Dr Zagami explored pathways, principalship or academia when offered a permanent academic position (While on honeymoon in Europe). Rationalising that the greater good could be achieved in better preparing new teachers, Dr Zagami switched careers and began to develop as a researcher and academic. 

Teaching Experiences

Griffith University (Academic), 2007 - present

Queensland University of Technology (Sessional Academic), 2003 - 2006

St Aidan's Anglican Girls' School (Teacher, ICT Coordinator), 1999 - 2007

Australian Army Training Command (Instructor), 1999-2000

Australian Army School of Military Intelligence (Instructor), 1995-1998

St Hilda's Anglican Girls' School (Teacher, ICT Coordinator), 1995 - 1999

Frawley College (Teacher), 1994 - 1994 (6 months) 

Dakabin SHS (Teacher), 1994 - 1994 (6 weeks)

Springwood SHS (Teacher), 1994 - 1994 (6 days) 

Yeronga SHS (Preservice Placements), 1993

Australian Army Sub1 and Sub2 courses (Cadet), 1986 - 1987

Shailer Park SHS (Student Mentor), 1985 

Recognitions

Higher Education Academy Fellowship, 2018

Google Certified Innovator, 2017

 Making IT Happen award, 2016

Hewlett Packard Catalyst Award - Associate, 2011

Google Certified Teacher, 2011

Apple Distinguished Educator, Class of 2009

Griffith University Teaching and Learning Award, 2009

Griffith University eLearning Award, 2008

Apple Universities Consortium Scholarship, 2007

Australian College of Educators Fellowship, 2007

CSIRO Teaching Excellence Award, 2007

Excellence by a Teacher: Outstanding national Achievement, 2007

Queensland Computer Educator of the Year, 2006

Educational Philosophy 

Dr Zagami takes the position that our education system has evolved naturally to work reasonably well despite most people being entirely unaware of how it does so, including in most cases those within the system, and especially those calling for radical reform. This lack of understanding has resulted in significant inefficiencies that can be addressed to improve the scope and level to which we can learn in a lifetime. 

Dr Zagami is focused on optimising learning and teaching processes to maximise learning opportunities and potentials. While taking an interest in the social and cultural aspects of education where these impact upon learning potentials, such political and social reform agendas are checked by a scientific world view and an idealised valuing of a meritocracy. 

Dr Zagami believes that currently anything known can potentially be learnt by anyone (within a threshold of cognitive processing capability) given sufficient time and supportive teaching at each stage of brain development. It is where this has not occurred and student brains have missed developmental opportunities, that many students have reduced physical cognitive capability to learn as easily as students where foundation structures have been more effectively developed. 

Dr Zagami accepts that genetic and biologic influences (nature) on brain structure and size can advantage learning potential, but that these are negligible in most cases compared to (nurture) the inefficiencies and wasted developmental opportunities that limit the learning potential of students in all current educational systems.

Dr Zagami takes the view that the mastery of whole bodies of knowledge or capability (e.g. in the arts and sports) to an 'expert' level - such that the majority of tasks are optimised, automatic and subconscious, is a long process (10 years, 10000 hours or 50000 units of memory) of deliberate practice (aimed at improving a level of performance) leading to brain development - thickening neural pathways and building a cognitive network of sufficient complexity that mental models (or states) are achieved without the need for extensive working memory processing. This explains reliability and accuracy of experts, the difficulty of experts to explain their thought processes when performing at an expert level, and the difficulty of modelling such processes to novice learners. The physical processes that explain this long term cognitive development is a key focus of Dr Zagami's research.

It is Dr Zagami's contention that everyone should be afforded the opportunity and support to develop to an expert level in at least one domain in their lifetime and that this is the primary purpose of education.

Pre-foundational and Early Childhood Education

Dr Zagami takes a view that early stages of learning should be play and creativity based, designed to develop as many diverse cognitive links as possible before neural pruning occurs. These linkages provide a foundational networked structure that can be developed by subsequent structured learning. The more diverse (linking disparate areas of the brain) these linkages, the greater the brains capacity for future learning. Using this period of brain development where neural links are made easily between all areas of the brain, foundational mental models (states) of basic concepts are developed that will be used later to build more complex concepts. Where these are not built at this stage, it will be difficult or impossible to grown such neural pathways in later stages as pruning events occur to remove unused links. Emphasis on Associations.

Emphasis on play and creativity and requiring specialist expertise of Early Childhood Educators.

Education should focus on encouraging students to explore as many new ideas as possible where students imaginatively and freely associate these ideas with other concepts. Fantasy and creativity in linking concepts should be encouraged without concern that concepts are being developed correctly. Indeed it should be emphasised that these linkages are not likely to be correct so that misconceptions are not reinforced, and that in primary education students will explore which of their concepts are accepted as correct without judgement on those concepts and linkages they have developed that will be deemed incorrect. 

Primary Education

This stage involves rigorous developmental processes using a highly structured mastery learning environment to develop concepts and mental models (states) of increasing complexity. A balanced combination is required of extensive repetition to strengthen pathways and engaging contextualisation to link associated concepts. This period of brain development is where the rapid accumulation of knowledge is possible and it should be fully exploited with minimal consideration of 'higher order thinking' skills that rely upon the development of brain structures not yet matured. With pruning events continuing, a focus on strengthening pathways, with concepts continuously revisited in as many different contexts as possible, is required to save concepts and the linkages between concepts from pruning so that they can be developed further in later stages. Emphasis on Declarative Knowledge.

Emphasis on drill and practice, mastery learning, shallow but wide, and requiring specialist expertise of Primary Educators. 

Education should focus on learning many chunks of knowledge, gradually linking these chunks, and over the course of several years building an understanding of various domains of knowledge and the relationships between them. Guiding learners through the stage where they have incomplete knowledge to see how this knowledge fits together relies on trust and confidence that teachers are effectively guiding students towards this goal. 

Middle Years Education

As cognitive brain structures develop that permit more complex processes such as problem solving, identity formation, etc. a progressive shift, where possible individually timed to each students brain development, should be made to developing these capabilities and reducing knowledge acquisition and the repetitive maintenance and strengthening of neural linkages. This will involve the development of complex processes such as evaluation, analysis, communication, reflection, etc. that rely upon prior knowledge acquisition that should now be of sufficient complexity and strength to support such development. Emphasis on Procedural Knowledge.

Emphasis on problem solving, PBL, general capabilities development, and requiring specialist expertise of Middle Years Educators.

Secondary Education

When sufficient understanding of bodies of knowledge exist to enable specialisation decisions to occur, students should commence the development of expertise in domains of knowledge. This should be undertaken in the knowledge that expertise will not be achieved during compulsory schooling but can be continued through tertiary studies and/or life long learning. Expert modelling should not occur at this stage as student mental models (states) are not sufficiently complex to learn from expert modelling but teachers with expertise in teaching domains of knowledge should model transitionary learning processes with a focus on pedagogical strategies. This will be different to 'industry best practice' or 'expert modelling' but be contextualised as a necessary transitional stage to achieving such. Emphasis on Declarative and Procedural Specialisation.

Emphasis on increasingly complex worked examples, narrow but deep, and requiring specialist expertise of Secondary Educators.

Tertiary Education

Tertiary studies should continue this developmental process but increasingly model expert practice as students approach the level of mental modelling (states) that can learn from expert modelling. In vocational training where expertise in a domain is well defined, this will be accelerated by the apprenticeship model, in less well defined professional fields, this may not occur until postgraduate studies. Increasing emphasis on Expert Mentorship from Declarative and Procedural Specialisation.

Emphasis on self directed learning, modelling of experts, and requiring the expertise of Domain Experts.

Life-long Learning

At an expert level in a domain, emphasis will be on developing new associations between concepts, eventually to a stage where these will not have been anticipated during formal education. Where nascent linkages were developed in the earliest stages of learning and survived pruning events, or creative thinking processes have sustained and strengthened nascent linkages, experts can build upon the autonomous processing within domains, particularly where expertise exists in multiple domains, to explore new avenues of knowledge which we associate with research. Emphasis on Associations between domains of expertise.

Thus the expertise of master craftpersons, professionals, and the research output of academics may rely strongly upon imaginative play in infancy and an educational system (or alternative learning environment) that sustains such linkages in spite of competing demands of replicating collective human wisdom and developing specialised expertise in chosen domains. 

Life long learning in a context of 80000 hours of paid employment and post retirement learning opportunities, means that several areas of expertise are possible if active learning is continued throughout a lifetime. What remains required however is the scaffolded learning at the highest levels of expertise, from master craftspersons, academics and leaders in the professions. Where access to this scaffolded expertise has in the past been limited, learning technologies are beginning to provide alternatives to direct mentorship but this is an area that is in need of considerable research and development as initial expert system models have languished without a supportive andradogy framework. 

Social media technologies may enable a mass mentoring of expertise where experts provide sufficient detail of their working processes to model expert behaviour. As this would not be individualised to a learners developmental state, the learner would require sufficient self-directed learning processes to progress their mental models to a point where generalised expert modeling is useful to develop their own expertise.

The use of technologies such as the internet to augment concept storage and linkages between concepts is tantalising but not yet established. Using external retrieval processes such as search engines and social networks may replicate working memory retrieval processes but it is unclear how this would assist in cognitive processing and associated strengthening or pruning of neural pathways to develop sufficient complexity to enable an expertise level of autonomous activity. It may even inhibit expertise development if there is a cognitive reliance upon external processes for low level tasks suppressing internal network development. Conversely however, external retrieval processes may scaffold internal processes in which the use of the internet and social networks to retrieve and structure knowledge supports the development of parallel cognitive capacities and this would be consistent with similar developments in writing and printing.